Headquartered in Chicago, IL, Maruichi Leavitt Pipe and Tube, a subsidiary of Maruichi Steel Tube, began producing mechanical steel tubing in 1956. Over the 65 years since, Maruichi Leavitt has evolved into an industry leader, operating four tube mills, with one of the broadest size ranges of structural (ASTM A500) tube, mechanical (ASTM A513) tube and standard pipe (ASTM A53) in the industry. Maruichi Leavitt Pipe and Tube continually invests in our employees and equipment to innovate the tubular products of the future. Everywhere, Maruichi Leavitt.

For more information, please visit: maruichi-leavitt.com
Environmental Product Declaration

MARUICHI LEAVITT PIPE AND TUBE
FABRICATED HOLLOW STRUCTURAL SECTIONS

According to ISO 14025 and ISO 21930:2017

| EPD PROGRAM AND PROGRAM OPERATOR NAME, ADDRESS, LOGO, AND WEBSITE | UL ENVIRONMENT
333 PFINGSTEN ROAD NORTHBROOK, IL 60611
https://www.ul.com
https://spot.ul.com |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL PROGRAM INSTRUCTIONS AND VERSION NUMBER</td>
<td>General Program Instructions v.2.5 March 2020</td>
</tr>
<tr>
<td>ASSOCIATION NAME AND ADDRESS</td>
<td>Maruichi Leavitt Pipe and Tube</td>
</tr>
<tr>
<td>DECLARATION NUMBER</td>
<td>4790146752.101.1</td>
</tr>
<tr>
<td>DECLARED PRODUCT & DECLARED UNIT</td>
<td>Hollow structural steel sections, 1 metric ton</td>
</tr>
<tr>
<td>DESCRIPTION OF PRODUCT APPLICATION/USE</td>
<td>Hollow structural steel sections used in construction</td>
</tr>
<tr>
<td>MARKETS OF APPLICABILITY</td>
<td>North America</td>
</tr>
<tr>
<td>DATE OF ISSUE</td>
<td>April 1, 2022</td>
</tr>
<tr>
<td>PERIOD OF VALIDITY</td>
<td>5 years</td>
</tr>
<tr>
<td>EPD TYPE</td>
<td>Product specific</td>
</tr>
<tr>
<td>EPD SCOPE</td>
<td>Cradle to gate</td>
</tr>
<tr>
<td>YEAR(S) OF REPORTED PRIMARY DATA</td>
<td>2019-2020</td>
</tr>
<tr>
<td>LCA SOFTWARE & VERSION NUMBER</td>
<td>GaBi v10</td>
</tr>
<tr>
<td>LCI DATABASE(S) & VERSION NUMBER</td>
<td>GaBi 2021 (CUP 2021.2)</td>
</tr>
<tr>
<td>LCIA METHODOLOGY & VERSION NUMBER</td>
<td>IPCC AR5 + TRACI 2.1</td>
</tr>
</tbody>
</table>

The sub-category PCR review was conducted by:
UL Environment
PCR Review Panel
epd@ul.com
Cooper McCollum, UL Environment
Sphera Solutions Inc
James Mellentine, Thrive ESG

☐ INTERNAL ☒ EXTERNAL

This declaration was independently verified in accordance with ISO 14025: 2006.

This life cycle assessment was conducted in accordance with ISO 14044 and the reference PCR by:

This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:

LIMITATIONS
The environmental impact results of steel products in this document are based on a declared unit and therefore do not provide sufficient information to establish comparisons. The results shall not be used for comparisons without knowledge of how the physical properties of the steel product impact the precise function at the construction level. The environmental impact results shall be converted to a functional unit basis before any comparison is attempted. Please refer to the results section for additional EPD comparability guidelines.

Environmental declarations from different programs (ISO 14025) may not be comparable.
General Information

Description of Organization

Maruichi Leavitt Pipe and Tube is an ISO 9001:2015 registered manufacturer of structural (HSS), mechanical steel tubing and ERW Pipe. Located in Chicago, Illinois, we produce steel tubular products to the ASTM A500, ASTM A513 and ASTM A53 specifications.

This environmental product declaration (EPD) represents HSS produced by Maruichi Leavitt in Chicago, IL.

Product Description

Cold formed, electric welded carbon steel tubular products that are used in applications such as tillage equipment, boat trailers and automotive applications. These products are rolled into squares, rounds and rectangles per the customer order.

Product Specification

HSS products produced by Maruichi Leavitt are defined by the following ASTM standards:

- ASTM A500
- ASTM A513
- ASTM A53

Flow Diagram

Product Average

The 2019 and 2020 production data used in this EPD considers HSS produced by Maruichi Leavitt during the year. The products are manufactured in the US. As Maruichi Leavitt produces HSS at one location, no product averaging was required.
Application

HSS are typically used in buildings, bridges, and industrial applications.

Material Composition

Steel HSS products are made of carbon steel with a small percentage of alloy elements and paints included. The products do not contain any hazardous substances according to the Resource Conservation and Recovery Act (RCRA), Subtitle 3. The products do not release dangerous substances to the environment, including indoor air emissions, gamma or ionizing radiation, or chemicals released to air or leached to water and soil.

Methodological Framework

Declared unit

The declared unit for this EPD is one metric ton of steel construction products. Note that comparison of EPD results on a mass basis alone is insufficient and should consider the technical performance of the product.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declared unit</td>
<td>1</td>
<td>metric ton</td>
</tr>
<tr>
<td>Density (typical)</td>
<td>7,850</td>
<td>kg/m3</td>
</tr>
</tbody>
</table>

System Boundary

This EPD is "cradle-to-gate" in scope. The life cycle stages included in the assessment represent the product stage (modules A1-A3).
Environmental Product Declaration

MARUICHI LEAVITT PIPE AND TUBE
Fabricated Hollow Structural Sections

According to ISO 14025 and ISO 21930:2017

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>CONSTRUCTION STAGE</th>
<th>USE STAGE</th>
<th>END OF LIFE STAGE</th>
<th>BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material supply</td>
<td>Transport</td>
<td>Manufacturing</td>
<td>Assembly/install</td>
<td>Use</td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A5</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>MND</td>
<td>MND</td>
</tr>
</tbody>
</table>

* X = module included, MND = module not declared

Allocation

No multi-output allocation was required in the foreground system of the study.

Allocation of background data (energy and materials) taken from the GaBi 2021 databases is documented online at http://www.gabi-software.com/america/support/gabi/. Background data for steelmaking from AISI use the system expansion allocation method for co-products from the steelmaking process.

Since the EPD does not cover the end-of-life of the products, end-of-life allocation is outside the scope of the study. Metal scrap from manufacturing (module A3) was balanced with the scrap demand of the raw materials module (A1) in order to calculate the net scrap input to module A1.

Under a cradle-to-gate system boundary, scrap inputs to the system are not associated with any upstream burden, and scrap produced during manufacturing is assumed to be at least the same quality as scrap inputs into steelmaking. Remelting of scrap to produce structural steel and other raw materials is accounted for within module A1 using upstream datasets.

Cut-off Rules

In lieu of arbitrary cut-off criteria, all available energy and material flow data were included in the model for processes within the system boundary.

In cases where no matching life cycle inventories were available to represent a flow, proxy data were applied based on conservative assumptions regarding environmental impacts.

Data Sources

The LCA model was created using the GaBi 10 software system for life cycle engineering, developed by Sphera (Sphera, 2021). Background life cycle inventory data for raw materials and processes were obtained from the GaBi 2021 database (CUP 2021.1). Primary manufacturing data were provided by Maruichi Leavitt.

Data Quality
A variety of tests and checks were performed by the LCA practitioner throughout the project to ensure high quality of the completed LCA. Checks included an extensive internal review of the project-specific LCA models developed as well as the background data used. A full data quality assessment is documented in the background report.

Period Under Review

Primary data were collected for HSS production during the year 2019 and 2020. Background data for steel coil production was taken from AISI and represents steel production during 2017. This analysis is intended to represent production in 2020.

Estimates and Assumptions

The underlying study was conducted in accordance with the PCR. While this EPD has been developed by industry experts to best represent the product system, real life environmental impacts of HSS products may extend beyond those defined in this document.

All of the raw materials and energy inputs have been modeled using processes and flows that closely follow actual production data on raw materials and processes. All of the reported material and energy flows have been accounted for. The HSS inventory data was collected as part of the STI industry-average EPD. Where inbound transportation data was incomplete, a distance of 500 miles by truck was used.

Proxy data were applied to some materials where no matching life cycle inventories were available, as documented in the background report.

Technical Information and Scenarios

Manufacturing

Hollow structural sections are manufactured by cold-forming steel coil into tubes. Hot-rolled coil is first slit into sections of appropriate width. The narrower coils are then uncoiled and passed through a series of rollers that form the continuous sheet into tubes. Tube cross-sections can be rectangular, round, or elliptical, depending upon the intended application. The two edges of the coil are welded together via an electric resistance welding process and the product is then cut to length. Once manufactured, HSS can be powder coated or primed—or left uncoated. The tubes are subsequently packaged for shipment.

The primary input to HSS production is the steel itself, although small amounts of process and coating materials are needed. Electricity is used for manufacturing and to move the materials. Manufacturing produces some metal scrap. The scrap generated during manufacturing is assumed to be produced at the same quality as used by the upstream metal production processes. Therefore, the scrap from manufacturing is treated assuming open-loop recycling.

Fabrication results are taken from the American Institute of Steel Construction (AISC) industry average EPD (AISC, 2021)

Inbound Transportation

Inbound transportation distances and modes for steel and process materials were collected from the site.

Transportation
MARUICHI LEAVITT PIPE AND TUBE
FABRICATED HOLLOW STRUCTURAL SECTIONS

According to ISO 14025
and ISO 21930:2017

Transportation to the customer or construction site is outside the scope of this EPD.

Product Installation

Installation is outside the scope of this EPD.

Use

Product use is outside the scope of this EPD.

Reuse, Recycling, and Energy Recovery

Product reuse, recycling, and incineration for energy recovery is outside the scope of this EPD.

Disposal

Product disposal is outside the scope of this EPD.

Environmental Indicators Derived from LCA

North American life cycle impact assessment (LCIA) results are declared using TRACI 2.1 (Bare, 2012; EPA, 2012) methodology, with the exception of GWP which is reported using the IPCC AR5 (IPCC, 2013) methodology, excluding biogenic carbon. Primary energy use represents the lower heating value (LHV) a.k.a. net calorific value (NCV).

LCIA results are relative expressions and do not predict actual impacts, the exceeding of thresholds, safety margins or risks.

Fabrication requires 1.08 metric tons of HSS per 1 metric ton of fabricated product (AISC, 2021). A1 includes production of all 1.08 metric tons of HSS.

Table 2. LCIA results, per 1 metric ton of fabricated HSS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>TOTAL</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP 100</td>
<td>kg CO₂ eq.</td>
<td>1.99E+03</td>
<td>1.85E+03</td>
<td>4.46E+01</td>
<td>9.67E+01</td>
</tr>
<tr>
<td>ODP*</td>
<td>kg CFC 11 eq.</td>
<td>1.62E-09</td>
<td>-2.54E-12</td>
<td>8.67E-14</td>
<td>1.62E-09</td>
</tr>
<tr>
<td>AP</td>
<td>kg SO₂ eq.</td>
<td>4.21E+00</td>
<td>3.88E+00</td>
<td>1.83E-01</td>
<td>1.52E-01</td>
</tr>
<tr>
<td>EP</td>
<td>kg N eq.</td>
<td>2.22E-01</td>
<td>1.93E-01</td>
<td>1.64E-02</td>
<td>1.23E-02</td>
</tr>
<tr>
<td>SFP</td>
<td>kg O₃ eq.</td>
<td>7.17E+01</td>
<td>6.51E+01</td>
<td>4.44E+00</td>
<td>2.23E+00</td>
</tr>
<tr>
<td>ADP_fossil</td>
<td>MJ surplus</td>
<td>1.77E+03</td>
<td>1.59E+03</td>
<td>7.16E+01</td>
<td>1.04E+02</td>
</tr>
</tbody>
</table>

* ODP has limited relevance due to the absence of ozone-depleting emissions in the LCI, in both the background and foreground data.

Comparability: Comparisons cannot be made between product-specific or industry average EPDs at the design stage of a project before a building has been specified. Comparisons may be made between product-specific or industry average EPDs at the time of product purchase when product performance and specifications have been established and serve as a functional unit for comparison. Environmental impact results shall be converted to a functional unit.
basis before any comparison is attempted.

Any comparison of EPDs shall be subject to the requirements of ISO 21930. EPDs are not comparative assertions and are either not comparable or have limited comparability when they have different system boundaries, are based on different product category rules or are missing relevant environmental impacts. Such comparison can be inaccurate, and could lead to erroneous selection of materials or products which are higher-impact, at least in some impact categories.

Table 3. Resource use results, per 1 metric ton of fabricated HSS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>TOTAL</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPR_E</td>
<td>MJ LHV</td>
<td>1.20E+03</td>
<td>9.19E+02</td>
<td>6.24E+01</td>
<td>2.16E+02</td>
</tr>
<tr>
<td>RPR_M</td>
<td>MJ LHV</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>NRPR_E</td>
<td>MJ LHV</td>
<td>2.58E+04</td>
<td>2.36E+04</td>
<td>6.91E+02</td>
<td>1.47E+03</td>
</tr>
<tr>
<td>NRPR_M</td>
<td>MJ LHV</td>
<td>1.35E+01</td>
<td>9.38E-01</td>
<td>0.00E+00</td>
<td>1.26E+01</td>
</tr>
<tr>
<td>SM</td>
<td>kg</td>
<td>5.24E+02</td>
<td>5.24E+02</td>
<td>0.00E+00</td>
<td>7.52E-01</td>
</tr>
<tr>
<td>RSF</td>
<td>MJ LHV</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>NRSF</td>
<td>MJ LHV</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>RE</td>
<td>MJ LHV</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>FW</td>
<td>m³</td>
<td>9.76E+00</td>
<td>8.90E+00</td>
<td>1.81E-01</td>
<td>6.82E-01</td>
</tr>
</tbody>
</table>

Table 4. Output flows and waste categories results, per 1 metric ton of fabricated HSS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>TOTAL</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWD</td>
<td>kg</td>
<td>3.32E-01</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>3.32E-01</td>
</tr>
<tr>
<td>NHWD</td>
<td>kg</td>
<td>9.66E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>9.66E+00</td>
</tr>
<tr>
<td>HLRW</td>
<td>kg</td>
<td>1.03E-03</td>
<td>8.85E-04</td>
<td>3.16E-05</td>
<td>1.18E-04</td>
</tr>
<tr>
<td>ILLRW</td>
<td>kg</td>
<td>8.64E-01</td>
<td>7.40E-01</td>
<td>2.64E-02</td>
<td>9.85E-02</td>
</tr>
<tr>
<td>CRU</td>
<td>kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>MR</td>
<td>kg</td>
<td>2.01E+02</td>
<td>1.24E+02</td>
<td>0.00E+00</td>
<td>7.71E+01</td>
</tr>
<tr>
<td>MER</td>
<td>kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>EE</td>
<td>MJ LHV</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

Visualization of Life Cycle Impact Assessment

The relative contribution of each life cycle stage to the overall cradle-to-gate impact are presented in Figure 1, while the contribution of manufacturing components are presented in Figure 2.
Figure 1: Relative contribution by life cycle stage for 1 metric ton of fabricated HSS

The vast majority of potential environmental impacts is driven by the upstream burdens of steelmaking, therefore A1 is the dominant contributor across LCIA indicators.

To better understand sources of potential environmental impacts in Maruichi Leavitt’s HSS manufacturing process, Figure 2 presents relative results for HSS manufacturing (A1 only). Potential environmental impacts for HSS manufacturing are dominated by upstream burdens of steelmaking.

Figure 2: Relative contribution by manufacturing component for 1 metric ton of unfabricated HSS
Interpretation

The cradle-to-gate potential environmental impacts of Maruichi Leavitt’s HSS products are driven by steel coil production (A1). Inbound transport to fabrication (A2) and fabrication (A3) contribute to potential environmental impacts on a smaller order of magnitude.

Additional Environmental Information

Environment and Health During Manufacturing

We work to comply with all legal and other requirements; recycle all steel scrap and appropriate packaging; and improve the efficiency of energy waste. Please reference our SDS Sheets at https://files.constantcontact.com/d675804e001/e5738214-9bd4-4377-89bc-ab9992a8c5a4.pdf for more details.

Environmental Activities and Certifications

We are a responsible corporate citizen in protecting the environment. We comply with accepted environmental practices, including the commitment to meet or exceed applicable legal and other requirements, and strive to minimize the creation of wastes and pollution. Processes, materials, and people are managed in order to reduce the environmental impacts associated with the work involved.

Further Information

More details can be viewed on our website, maruichi-leavitt.com

References

Contact Information

Study Commissioner

Maruichi Leavitt Pipe and Tube
1717 West 115th Street
Chicago, IL 60643
maruichi-leavitt.com

LCA Practitioner

Sphera Solutions, Inc.
130 E Randolph St, #2900
Chicago, IL 60601
https://sphera.com/contact-us/
www.sphera.com